CHAPTER

Radiation

13.1 Introduction

So far, we considered heat transfer by conduction and convection. In these modes of heat transfer, there was
always a medium present for heat transfer to occur. However, radiation mode of heat transfer is radically differ-
ent in the sense that there is no need for a medium to be present for heat transfer to occur. Just as conduction and
convection heat transfers occur when there is a temperature gradient, net radiation heat transfer also occurs from
a higher temperature level to a lower temperature level. There are two theories concerning the radiation heat
transfer: one, classical electromagnetic wave theory of Maxwell, according to which energy is transferred during
radiation by electromagnetic waves, which travel as rays and follow the laws of optics; second, the ‘Quantum
theory’ of physics, according to which energy is radiated in the form of successive, discrete “quanta’ of energy,
called ‘photons’. Both the theories are useful to explain the radiation phenomenon and properties.

Radiation heat transfer is proportional to the fourth power of absolute termperature of the radiating surface.
Therefore, radiation becomes the predominant mode of heat transfer when the temperature of the body is high.
With this in mind, we can cite a few important applications of radiation heat transfer:

(i) industrial heating, such as in furnaces

{if) industrial air-conditioning, where the effect of solar radiation has to be considered in calculating the heat
loads

{iii) jet engine or gas turbine combustors

(iv) industrial drying

(v) energy conversion with fossil fuel combustion, etc.

Following are some of the features of radiation:

(a) The electromagnetic magnetic waves are of all wavelengths, travelling at the velocity of light, i.e. ¢ =3 x
10" em/s

(b) Frequency (f) and wavelength (4) are connected by the relation: ¢ = Af, which means that higher the
frequency, lower the wavelength

(¢} Smaller the wavelength, more powerful is the radiation, and also more damaging, e.g. X-rays and
Gamma rays. :

A sketch of the electromagnetic spectrum is shown in Fig. 13.1. Different parts of the electromagnetic spec-
trum have wavelengths (4) as shown in Table 13.1.

In this chapter, we are interested in radiations, which on absorption, result in production of heat, i.e. "ther-
mal radiation’. It may be observed that thermal radiation falls in the wavelength range of 0.1 to 100 microns (Unit
of wavelength is 1 micron = 10 m, and 1 Angstrom = 107" m), i.e. thermal radiation includes entire visible (i.e.
A =04 to 0.8 microns) and infra-red and part of ultra-viclet range. As a matter of interest, it may be stated that
most of the radiation from the sun (temperature: 5600°C approximately) is in the lower end of 0.1 to 0.4 microns
and, for comparison, radiation from an incandescent lamp is in the range of 1 to 10 microns.

While most of the solids and liquids emit radiation in a continuous spectrum, gases and vapours radiate
only in certain wavelength bands; therefore, they are known as ‘selective emitters”.



TABLE 13.1 Wavelengths of different types of radiation

Cosmic rays up to 4 x 1077 zm
Gamma rays 4x 10710 1.4 x 107" um
X-rays 1.0x10%t0 2 x 1072 um
Ultra-violet 0.01 to 0.39 gm
Visible radiation 0.39 tc 0.78 um
Thermal radiation 0.1 to 100 ym
Infra-red 0.78 to 1000 gm
Microwave 0.8 to 1000 mm
Radio waves Beyond 1 m
Thermal
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FIGURE 13.1 Eleciromognetic spectrum

13.2 Properties and Definitions

Often, we use the term ‘spectral’; it means, dependence on wavelength.

And, value of a quantity at a given wave length is called ‘monochromatic value'.

Absorptivity, Reflectivity and Transmissivity:

In general, when radiant energy (Q),) is incident on a surface, part of it may be absorbed {(},), part may be
reflected ((Q,) and part may be transmitted ((Q,) through the body. Then, obviously,

Q+Q+Q=0Q
ie. &.‘.&4.& =1
Qb Q&
ie. a+p+r=1 .(13.1)

where, @ = absorptivity = fraction of incident radiation absorbed
p = reflectivity = fraction of incident radiation reflected
7 = fraction of incident radiation transmitted.
Most of the solids and liquids are ‘opaque’, i.e. they do not transmit radiation, and 7= 0; so, for most solids
and liquids: o+ p = 1.
Gases reflect very little; so, for gases: @+ 7=1.
If 7= 1, entire radiation passes through the body; such a body is ‘transparent’ or ‘diathermaneocus’.
If & = 1, the body absorbs all the incident radiation and such a body is called a ‘black body".
If p = 1, all the incident radiation is reflected, and it is a perfectly “white body’.
In reality, there are no ‘perfectly’ black, white or transparent bodies.
However, some bodies are transparent to only waves of certain wavelength; for example, rock salt is trans-
parent to heat rays, but non-transparent to ultra-violet rays. And, window glass is transparent to visible light, but
almost non-transparent to ultra-violet and infra-red rays. Therefore, a space covered with glass (or plastic) enclo-
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sure, allows solar radiation to pass through it and the objects inside the enclosure get heated up; the heated
objects radiate, but this radiation is in the higher wavelength range (infra-red) to which glass or plastic is opaque.
So, the heat gets ‘trapped’ inside the enclosure and the temperature inside the erclosure rises above that of
ambient. This is known as ‘Greenhouse effect’ and is used to keep the plants warm in cold weather. Another
example of Greenhouse effect is manifested in heating up the interior of a car to a temperature much above the
ambient temperature when the car is parked in hot sun, with all its windows closed.

Absorption and reflection of heat rays depend rather on the state of the surface than on the colour of the
surface, For example, snow has an absorptivity of 0.985 and is nearly ‘black’ for thermal radiation!

Absorptivity of a surface can be increased by applying coatings of dark paints; usually, lamp black is used
for this purpose.

Monochromatic 6

radiation emitted 4

Directional
distribution

A 4

A

FIGURE 13.2 Spectral and spatial energy distribution

Spectral and Spatial energy distribution:
Distribution of radiant energy is non-uniform with respect to both wavelength and direction, as shown in
Fig. 13.2.
Perfect black body A perfect black body does not exist in nature; however, a petfect black body can be approxi-
mated in the laboratory by having a sphere coated black on the inside; then, if there is a small hole on the wail of
the sphere, the radiation Q entering the hole goes through multiple reflections and after ‘n’ reflections, p".Q is the
emergent energy flux. Obviously, the emerging flux tends to be zero when ‘n’ tends to infinity, i.e. the pin hole in
the sphere simulates a black body. This is known as ‘Hohiraum". See Fig. 13.3.
Note the following points in connection with a black body: '
(i) A black body absorbs all the incident radiation, of all wavelengths and from all directions
(ii) For a given temperature and wavelength, energy emitted by a black body is the maximum as compared
to any other body
(i) Black body is a ‘diffuse emitter’, i.e. the radiation emitted by a black body is independent of direction
{iv) A black body does not reflect or transmit any of incident radiation
Refiection Reflection may be ‘specular’ (or mirror-like) or ‘diffuse’. See Fig, 13.4
In specular reflection, the angle of incidence is equal to the angle made by the reflected ray with the normal
to the surface. In case of diffuse reflection, magnitude of reflected energy in a given direction is propertional to
the cosine of the angle of that direction to the normal. ‘Roughness’ of the surface determines if the reflection is
specular or diffuse: if the ‘height’ of corrugations on the surface is much smaller than the wavelength of incident
radiation, the surface behaviour is specular; otherwise, it is diffuse.
Emissive power (E) The ‘total (or hemispherical) emissive power’ is the total thermal energy radiated by a
surface per unit time and per unit area, over all the wavelengths and in all directions. Note, in particular, that
only the original, emitted energy is to be considered and the reflected energy is not to be included. Total emissive
power depends on the temperature, material and the surface condition.
Soiid angle ‘Solid angle’ is defined as a region of a sphere, which is enclosed by a conical surface with the
vertex of the cone at the centre of the sphere. See Fig. 13.5.
If there is a source of radiation of a small area at the centre of the sphere O, then the radiation passes through
the area A, on the surface of the sphere and we say that the area A, subtends a solid angle @ when viewed from
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Sphere coated black on  the centre of the sphere. Note that with this definition, A, is always

inside surface normal to the radius of the sphere. Mathematically, solid angle is
expressed as: :
w= A—; {steradians (sr)..(13.2))
r
However, in a practical case, the surface may not be part of a
Q sphere; but, if a plane area A intercepts the line of propagation of

radiation such that the normal to the surface makes an angle #with
the line of propagation, then we project the incident area normal to
the line of propagation, such that, the solid angle is now defined as:
A-cos(8
w=20 (133)
r

Note that, A.cos(#} = A, is the projected area of the incident
surface, normal to the line of propagation.

FIGURE 13.3 Simulation of a black
bedy in taboratory—'Hohlraun!
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FIGURE 13.4 Specular ond diffuse reflection

Intensity of radiation (/) Intensity of radiation for a black
body, I, is defined as the energy radiated per unit time per
unit solid angle per unit area of the emitting surface pro-

C@=A n‘,r? jected normal to the line of view of the receiver from the
radiating surface.
Mathematically, this is expressed as:
=" Wit (13.4)
(dA cos(@)-dw
FIGURE 13.5 Definition of solid angle JIE
ie. L= ——2  W/(m%r) ~(13.5)
cos{f)-dw

Note that Emissive power E;, of a black body refers to unit surface ares whereas Intensity I, of a black surface
refers to unit projecied area.

I, is the intensity of black body radiation for radiation of a given wavelength A And, I, is the summation
over all the wavelengths, i.e.

I = J;?ud,t W/(m?sr) .(136)

Consider a small, black surface dA emitting radiation all over a hemisphere above it. See Fig.13.6. Let a
radiation collector be located or the hemispherical surface at a zenith angle & to the normal to the surface and
azimuth angle ¢; further, let the collector subtend a solid angle dw when viewed from a point on the emitter.
Then, it will be observed that maximum amount of radiation is measured when the collector is vertically above
the emitter, normal to the emitter. In any direction & from the normal, rate of energy radiated is given by Lam-
bert’s cosine law: “A diffuse surface radiates energy such that the rate of energy radiated in a direction & from
the normal to the surface is proportional to the cosine of the angle &7, ie.

Qo= Q,-cos(8)
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FIGURE 13.6 Lombert's cosine low

In general, for real surfaces, intensity does not vary with ¢, but depends on & however, with the intensity of
radiation as defined above, ie. on basis of unit projected area, it can be shown that for a black surface, the
intensity is the same in all directions. Such a surface is known as ‘diffuse surface’.

For a diffuse, black surface, radiation intensity is independent of direction and such surfaces are also known
as ‘Lambertonian surfaces’.

Intensity can be thought of as brightness; looking down vertically along the normal, a viewer sees all of the
black surface dA at a particular level of brightness; and looking down along a line that makes an angle & with the
normal, the viewer will see only the projected area dA.cos{8), but at the same level of brightness.

Many real bodies, which are not diffuse, do not obey Lambert’s law and their radiation intensity changes
with the direction & for example, for polished metals, the ‘brightness’ is a maximum not in the direction normal
to the surface, but at 60 to 80 deg. from the normal, and with further increase in 6, the brightness drops abruptly
to zero. But for materials like corundum and copper oxide, the intensity (or brightness) is greater along the
normal than that in other directions.

13.3 Laws of Black Body Radiation

13.3.1 Planck’s Law for Spectral Distribution
Radiation energy emitted by a black surface depends on the wavelength, temperature of the surface and the
surface characteristics.

Planck’s distribution law relates to the spectral black body emissive power, E,; defined as ‘the amount of
radiation energy emitted by a black body at an absolute temperature T per unit time, per unit surface area, per
unit wavelength about the wavelength A". Units of Ey; are: W/ (m*zm). The first subscript ‘b indicates black body
and the second subscript ‘4 stands for given wavelength, or monochromatic. Planck derived his equation for Ey;
in 1901 in conjunction with his ‘quantum theory’.

Planck’s distribution law is expressed as:

C] N 2:'5 2
Epa (A) = 7oy W/ (m?pm) (13.7)
=2 {1
[5)
where, C, = 3.742 x 10° Wam*/m®
and, C, = 1.4387 x 10* umK.

Plots of E;, vs. 4 for a few different temperatures are shown in Fig. 13.7.
To plot the Planck’s distribution for a black body, using Mathcad, first, define E, ; as a function of T and 4 as
follows:
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FIGURE 13.7 Plonck’s distribution law for a black body

Spactral emissive power, Wi{m2micron)

C-A3
G
exp| —= |-1
Then, define a range variable A varying from 0.01 g#m o 1000 gm:
A =001, 0.02, ..., 1000.
Now, select the x—y plot from the graph palette; on x-axis place holder, type 2 and on the y-axis place holder,
fill in Ey; (4,100), E,, (4,500), E,; (4,1000), and E,; (4,5800). Click anywhere outside the graph region, and the

curves appear iitnediately.
This is an important graph that tells us quite a lot about the characteristics of black body radiation:

(i) At a given absolute temperature T, a black body emits radiation over all wavelengths, ranging from 0 to

Ep(A.T) = W/ (m’um) -(137)

(ii) Spectral emissive power curve varies continuously with wavelength.
(iii} At a given wavelength, as temperature increases, emissive power also increases.
{(iv) At a given temperature, emissive power curve goes through a peak, and a major portion of the energy
radiated is concentrated around this peak wavelength 4.
(v) A significant part of the energy radiated by sun (considered as a black body at a temperature of 5800 K)
is in the visible region (4 = 0.4 to 0.7 microns), whereas a major part of the energy radiated by earth at 300
K falls in the infra-red region.
(vi) As temperature increases, the peak of the curve shifts to the left, i.e. towards the shorter wavelengths.
(vii) Area under the curve between 4 and (4 + d1) = E, ;.44 = radiant energy flux leaving the surface within the
range of wavelength A to (4 + dA). Integrating over the entire range of wavelengths,

E, = JOTE;_)d,h o T* -{13.8)

E} is the total emissive power (also known as ‘radiant energy flux density’) per unit area radiated from a
black body, and & is the Stefan—Boltzmann constant = 5.67 x 10~°W/(m*K%). :

Corollaries of Planck’s law:
(a) For shorter wavelengths, (C,/A.T) becomes very large, and exp{C,/A.T) >> 1. Then, Planck’s formula
(Eq. 13.7) reduces to:
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c, A8

Eu = -—E— ...(13.9)
exp [ﬁ)

This equation is known as ‘Wein’s law” and is accurate within 1 % for A.T < 3000 gmK.
{(b) For longer wavelengths, the factor (C,/ A.T) becomes very small, and exp(C, /A.T) can be expanded in a

series as follows:
) 2
—e_ | =1 B R
EXP[A.T) YT [&-T v

. C
ie. exp(—ﬁ} =1+ % (approximate)
and, Planck’s law becomes:
A7 G T
Eyi=— =3 (13.10)
1+:2-1 Ch
AT

This is known as ‘Rayleigh-Jean’s law’ and is accurate within 1 % for Il AT > 8 x 10° umK. This law is
useful in analysing long wave radiations such as radio waves.

13.3.2 Wein’'s Displacement Law

It is clear from Fig. 13.7 that the spectral distribution of emissive power of a black body at a given absolute
temperature goes through a maximum. To find out the value of A_,, the wavelength at which this maximum
occurs, differentiate Planck’s equation w.r.t. 4 and equate to zero. We get:

-5
Epi = —(":%'— ' (from Eq. 13.7)
exp[ﬁ] -1

LR IR Y s o =t S &) .2
iE,, =[EXP(A-TJ 1Jc1( 54 G4 [EXP[A-TN[T]( -4

ie. =0
dA oY Y
exp =2 -1
AT
-C C
Simplifyi 5|1~ 2|l - =0
e <[l 5
Solving this transendental Eq. for C; /A.T by trial and error, we get:
S _ 4965
T ‘
4
Therefore, A T= S oL 1.4387 x 10
4.965 4.965
ie. Apae T = 2898 gmK (13.11)

i.e. A, is inversely proportional to the absotute temperature T, and the maximum spectral intensity shifts to-
wards shorter wavelengths as the absolute temperature is increased.

Wein's displacement law is stated as: “product of absolute temperature and wavelength at which emissive
power of a black body is a maximurm, is constant”.
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Value of maximum monochromatic emissive power of a black body at a given temperature is obtained by
substituting this value of 4,,,,T (= 2898 #mK) in Planck’s equation, i.e.

-5

0.002898
3742 x 10716 | =270
E C A5 x10 ( T J

blpy = = 1
ool €211 L4387 x10%)

Pl 2T 2898
ie. Epp = 1287 x107°-T° W/m’. -{13.12)

This is an important equation which tells us that the maximum monochromatic emissive power of a black
body varies as the fifth power of the absolute temperature of the body.

In practice, this law is applied to predict very high temperatures simply by measuring the wavelength of
radiation emitted.

Dividing monochromatic emissive power of a black body, E, ;, by its maximum emissive power at the same

temperature, E, Ayt e get the dimensionless ratio:
C A7

G
exp| —= |—-1
En(T)  _ p[’l'T]
Ebi max (T) Cl ’?':nsax

Ea(T)
Eb;lmax (T)

5
~6
[2898 x10 J | —&p(4.965) -1 (where, 4 is in microns, and T in Kelvin..(13.12a))

AT ex 0.01439 1
Pl 72T

Note that RHS of Eq. 13.12a is a function of AT only. Therefore, to determine the monochromatic emissive
power, E,, of a black body at any given temperature T and wavelength A first find out (E,;/Ej jma,) from Eq.
13.12a, then evaluate Ey ., from Eq. 13.12, and then multiply them together. ’

13.3.3 Stefan-Boltzmann Law

Monochromatic emissive power of a black body is obtained from the Planck’s law. Then, the total emissive
power of a black body over the entire wavelength spectrum is obtained by integrating E, ;. Total emissive power
{or, hemispherical total emissive power) is denoted by E,, and is given as:

o - -5
E, = J.Eb,ld}[ = _[ S L))
0 0 exp [&] -1
AT
Performing the integration, we get:
E, = - T* W/m? (13.13)
where, o =567 x 1078 W/(mKH

o is known as ‘Stefan-Boltzmann constant’.

Eq. 13.13 is the governing rate equation for radiation from a black body. Its significance lies in the fact that
just with a knowledge of the absolute temperature of a surface, one can calculate the total amount of energy
radiated in all directions over the entire wavelength range.

Net radiant energy exchange between two black bodies at temperatures T; and T, is, therefore, given by:
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Qnet = 0T, = T,) W/m* (13.14)
13.3.4 Radiation from a Wave Band

Often, it is required to know the amount of radiation emitted in a given wave band, i.e. in a wavelength interval
between A, and A,. This is expressed as a fraction of the total emissive power and is written as Fj;_;>. Then, we
can write:

4,

Eyq dA ’

1 1 ?

Fu m - = 7| Esadd

Eadi o1 A
. 1 Az A;
ie. Fa m=—p jEMM-J'EMu

- oT 0 0

ie. Fil _az = F0_12 - PO__ a1 (1315)

Above formula is not very convenient to use, since E;; depends on absolute temperature T, and it is not
practicable to tabulate F,_; for each T. This difficulty is overcome by expressing Fy_; as follows:

i AT
EpidA | Ep d(A-T)
Fo_a= . T - ¢
- oT o T
ie. Fy 1=f(AT) .(13.18)

ie. now, Fy ; is expressed as a function of the product of wavelength and absolute temperature ( = A.T) only.
Values of F, ; vs. A.T are tabulated in Table 13.2 and plotted in Fig. 13.8.
Note that the units of product A.T is (micronKelvin).
Therefore,

0
ie. F‘u_az = FU_ T~ Fﬂil} T ...(13.17)

13.3.5 Relation between Radiation Intensity and Emissive Power

Consider a differential black emitter dA; radiating into a hemisphere of radius r, with the centre of the hemi-
sphere located at dA,. To get a relation between the intensity of radiation and the emissive power, we first

1
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TABLE 13.2 Radiation functions

400 0 7000 0.8081

600 ) 0 7200 0.8192

800 0.0000186 7400 '0.8295
1000 0.00032 7600 0.848
1200 0.00213 7800 0.848
1400 0.0078 8000 0.8563
1600 0.0197 8500 0.8746
1800 0.0393 8000 0.89
2000 0.0867 9500 0.9031
2200 0.1009 10000 0.9142
2400 0.1403 10500 0.9237
2600 0.1831 11000 0.9319
2800 0.2279 11500 0.9399
3000 0.2732 12000 0.9451
3200 0.3181 12500 0.9505
3400 0.3617 13000 0.9551
3600 0.4036 13500 0.9592
3800 0.4434 14000 0.9628
4000 0.4809 14500 0.9661
4200 0516 15000 0.9689
4400 0.5488 16000 0.9738
4600 0.5793 17000 0.9776
4800 0.6075 18000 0.9808
5000 0.6337 18000 0.9834
5200 0.659 20000 0.9855
5400 0.6804 25000 0.9922
5600 0.701 30000 0.9853
5800 0.7201 35000 0.9969
6000 0.7378 40000 0.9979
6200 0.7541 45000 0.9985
6400 0.7962 50000 0.9989
6600 0.7832 : 75000 0.9997
6800 0.7961 100000 0.9995

calculate the rate of energy falling on a differential area dA, on the surface of the hemisphere using the definition
of intensity, then calculate the rate of energy falling on the whole of the hemisphere by integrating, and then
equate this amount to the rate of radiant energy issuing from the black surface dA,.

Let the rate of radiant energy falling on dA; be d(Q. Solid angle subtended by dA, at the centre of the sphere,
dw = dA,/1%. Projected area of dA, on a plane perpendicular to the line j joining dA, and dA, = dA.cos(#). Then,
by definition, intensity of radiation is the rate of energy emitted per unit projected area normal to the direction of
propagation, per unit solid angle, i.e.

I Q-
b7 dA; cos(8)-dw
ie. e—99 .(13.18)

dA; -cos(ﬁ)-gézl
,
But, it is clear from Fig. 13.9 that differential area dA, is equal to:

dA; = (r-dé}-(r-sin(6)-dg)
Le. dA, = ri.sin(8)-d6-d¢ .{13.19)
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Then, from Egs. 13.18 and 13.19, n
dQ = I,-dA;-sin{8)-cos(8)-d8.dg

Then, total rate of radiant energy falling on the
hemisphere, (), is obtained by integrating this value of
A0 over the entire hemispherical surface. Noting that
the whole of hemispherical surface is covered by tak-
ing 8 from 0 to (£/2) and, ¢ from 0 to (2. 7), we write:

r.5in(0) dA, = i sin(0).de.d¢

Black
emitter

L pay 4
Q= Ib-dA,-ng_OL=Osin(9)-cos(8)d8d¢

"

e, Q= 2-;:-1,,.dA1-LZ sin(@) cos(6)d0

z FIGURE 13.9 Radiafion from a differential area
ie. Q=r I..,-dAl-L2 DZsi.n(HJ-cos(G)dH dA, to surrcunding hemisphere
i x
ie. Q= zr-Ib-dAl-jz sin(2- Hde
=0
ie. Q = zl,-dA, ..(13.20)
But, Q is also equal to: E,-dA,
Therefore, E,-dA, = =1 dA;
or, E, = n1, -{13.21)

i.e. Total emissive power of a black (diffuse) surface is equal to 7 times the intensity of radiation.
This is an important relation, which will be used while calculating the view factors required to determine net
energy exchange between surfaces.

13.3.6 Emissivity, Real Surface and Grey Surface

As already stated, a ‘black body’ is an ideal, and it emits maximum amount radiation at a given temperature; i
black body also absorbs all the radiation incident on it. A perfect black body does not exist in practice, but this
concept is useful as a standard to compare radiation properties of different bodies.

Real surfaces always emit less radiation as compared to a black body.

Emissivity (£) of a surface is defined as ‘the ratio of radiation emitted by a surface to that emitted by a black
body at the same temperature’. Value of £ vaties between 0 and 1. For a black body, £= 1, and emissivity of a
surface is a measure of how closely that surface approaches a black body.

Emissivity of a surface is not a constant, but depends on nature of the surface, temperature, wavelength,
method of fabrication, etc. For example, oxide film on a metal surface increases its emissivity. Emissivity of alloys
is greater than that of pure metals. And, emissivity of semi-conductors is greater than 0.8 at 100 deg.C and goes
on decreasing with rising temperature. Dielectric materials have higher values of emissivity as compared to that
of pure metals, and in this case also, emissivity decreases with increasing temperature.

g, refers to the emissivity at a given wavelength, 4, and is known as spectral emissivity. When it is averaged
over all wavelengths, it is known as total emissivity.

Similarly, £, refers to emissivity in a given direction, § where #is the angle made by the direction consid-
ered with the normal to the surface; this is known as directional emissivity. When &£, is averaged over all direc-
tions, it is known as hemispherical emissivity. Thus, the total hemispherical emissivity (&) of a surface is the
average emissivity over all directions and all wavelengths and is expressed as:

E(T
e(T) = D _ED) ?1 ..(13.22)
E(T) oT
where, E(T) is the emissive power of the real surface. Similarly, spectral emissivity is defined as:
g =200 ~(1323)

Eps (T)
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TABLE 13.3 Emissivity volues for a few surfaces at room temperature

Aluminium;
Polished 0.03
Anodised 0.84
Foil 0.05
Copper:
Polished 0.03
Tamished 0.75
Stainless Steel:
Polished 0.21
Dull 0.60
Concrete 0.88
White marble 0.95
Red brick 0.93
Asphalt 0.90
Black paint 0.97
Snow 0.97
Human skin 0.97
1.0 Emissivity values for a few surfaces at room tem-
Nonconductor perature are given in Table 13.3. More detailed listing is

given in Handbooks.

Generally, for simplification of calculations in radia-
tion heat transfer, we make ‘grey’ and “diffuse’ approxi-
0.5 - mations.

A surface is said to be grey if its properties are inde-
pendent of wavelength, and a surface is diffuse if its
7 Conductor properties are independent of direction.

A black body is perfectly diffuse, and, real bodies,
though not perfectly diffuse, come quite close to it. As an
example, a qualitative graph of directional emissivity, &,
with 6, for electrical conductors and nonconductors, is

Eg

0 T l T T 1
0 15 30 45 60 75 a0

0 given in Fig. 13.10 (#is measured from the normal to the
FIGURE 13.10 Variation of emissivity surface, and @ = 0 means normal to the surface).
with direction It may be observed that for conductors, &is nearly

constant for about & < 40 deg. and for nonconductors
{such as plastics), g;remains constant for & < 70 deg. Therefore, directional emissivity in the normal direction (i.e.
& = 0) is taken as true representative of hemispherical emissivity; further, in radiation analysis, generally, the
surfaces are assumed to be diffuse emitters.
Emissivities and emissive powers of black body, real surface and grey surfaces are compared in Fig. 13.11.
Grey surface approximation implies that £ of grey surface is a constant, but less than that of a black surface
(= 1). In the above Fig. the grey surface curve is drawn such that areas under the emission curves of the real and
grey surfaces are equal. i.e.

£(T)-oT" = jsl(r)-s,,j(ndz
0
Therefore, average emissivity is given by:

J:.; AT) Epg(T)dA

o T
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T = constant T = constant

£y A t
'{Black body, & = 1 Black body, Ey,

Grey surface
Grey surface, € = constant E, =€Ey;

Real surface
E, =5 Epn

Real surface, ¢,

A\ 4

0 8 A
FIGURE 13.11 Emissivity and emissive power for black bady, grey and real surfaces at o given temperature

Integrand on the RHS of the above equation has generally to be evaluated numerically. However, if the
wavelength spectrum can be divided into sufficient number of wave-bands and the emissivity can be assumed to
be constant {but different) in each band, then the integration can be performed quite easily.

For example, let the variation of spectral emissivity with wavelength be as follows:

£ = constant, 0 S A< A,
£ =constant, 4, £ A< 4,
£; = constant, A, A< o
Then, the average emissivity is calculated using Eq. 13.24 as follows:

A Ay o
e[ Eramas ex [Fumir fs'jgbz(T)di
+ +
o-T? o.T* oT"

ie. £(T) = &,.Fg51(T) + &3.F31_pn(T) + £.F (T ..(13.26}
Factors F,_;{T), etc., can easily be determined using Table 13.2.
It should be clearly understood that emissivity values strongly depend on the surface conditions, oxidation,
roughness, cleantiness, type of finish, etc. So, there is always an element of uncertainty while using reported
values.

13.3.7 HKirchhoff’'s Law Black body, £ = 1
Kirchhoff’s law establishes a relation between the total, hemispherical

emissivity, € of a surface and the total, hemispherical absorptivity. This

is a very useful equation in calculating the net radiant heat loss from

surfaces.

Consider a small, grey body of area A, emissivity £and tempera-
ture T be located inside an isothermal enclosure maintained at the same
temperature T. Since the enclosure (or, cavity) is isothermal, its behav-
iour can be taken as that of a black body, irrespective of its surface . .
properties. Also, since the grey body inside the enclosure is small, it FIGURE 13.12 Kirchhoff's Law
does not affect the black body nature of the enclosure.

Now, radiation incident on the small body is equal to the radiation emitted by the black body at temperature
T,ie. G = E,(T) = a.T*, per unit surface area. And, the radiation absorbed by the small body per unit surface area
= Gy, = @G = a.0.T. Further, radiation emitted by the small body per unit area of its surface = E = £.0.T".

Since both the smail body and the enclosure are at the same temperature, T, they will be in thermal equilib-
rium and the net heat transfer rate to the small body must be equal to zero.

i.e. radiation emitted by the small body = radiation ab-sorbed by the small body,
ie. AcoT =AacT

&M = .(13.25)
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ot, :

£(T) = o(T) .{13.27}
Eq. (13.27) represents Kirchhoff's law. Kirchhoff's law states that the “total hemispherical emissivity, £ of a
grey surface at a temperature T is equal to its absorptivity, & for black body radiation from a source at the
same temperature T.”

Note the important restrictions on Eq. 13.27: one, incident radiation must be from a black body, and, second,
black body must be at the same temperature as that of the other body. However, for practical purposes, we
assume that the emissivity and absorptivity of a surface are equal, even when that surface is not in thermal
equilibrium with the surroundings, since absorptivity of most of the real surfaces is not very much sensitive to
temperature and wavelength.

Similar to Eq. 13.27, we can write for monochromatic radiation,

& (T) = ay(T) -(13.28)
Exampls 13.1. Incident radiation (G = 1577 W/m?) strikes an object. The amount of energy absorbed is 472 W/m? and
the amount of energy transmitted is 78.8 W/m%. What is the value of reflectivity?

Solution,
Data: :
G:=1577W/m? Q=472 W/m?  (J,:= 78.8 W/m?
Let Q, be the reflected radiation.
Then, we have: Q=G-0Q,-Q,
ie. Q, = 1.026 x 10° W/m? (reflected radiation)
Therefore, reflectivity p is given by:
2
= G
ie. p=0651 (reflectivity.)

Example 13.2. A hole of area dA = 2 cm? is opened on the surface of a large spherical cavity whose inside is maintained
at 1000 K. Calculate: (a) the radiation energy streaming through the hole in all directions into space, (b) the radiation
energy streaming per unit solid angle in a direction making a 60 deg. angle with the normal to the surface of the
opening.
Solufion. See Fig. Ex. 13.2.
Data:

dA:=2x10"m* T:=1000K o:=567 x 10" W/(m’K?) (Stefan-Boltzann const)  8:= 60 deg,

ie. 8:= 60— (radians)
180

(a) Radiation streaming out in all directions:

Since the spherical cavity can be considered as a black body, energy streaming out is given by Stefan—Boltzmann law:
ie. Qw=dAoT!

or, Q=1134 W (radiation energy streaming through the hole.)
(b} Radiation streaming out through unit solid angle, in a direction making 60 deg. with normal:

Now, we have the relation: F; = #-/;, where E, = Emissive power, and }, = Intensity of radiation.

Radiation
streaming out in n
all directions
T=1000K
a=60°

{a) (b)
FIGURE Exomple 13.2 Radiation streaming out from a hole on the surface of a sphere

FUNDAMENTALS OF HEAT AND MASS TRANSFER



E

Therefore, I = ﬂ_

But, E = oT' W/m’ (for a black body, by Stefan—Boltzmann law)
ie I, = %ﬁ W/ (m?sr) (intensity of radiation)
ie. I, = 1.805 x 10* W/(m®s1)

and, radiation streaming out in that direction:

Q= I, dA-cos (§) W (where 8is in radians (Note: while using Mathcad, & must be in radians while calculating cos(8).))
Le. Q=1805W (radiaion through a solid angle of unity, in a direction of 60 deg. with normal to the surface.)
Exomple 13.3, [t is observed that intensity of radiation is maximum in case of solar radiation at a waveiength of 0.49
microns. Assuming the sun as a black body, estimate its surface temperature and emissive power. Wein displacement
constant = 0.289 x 1072 mK.
Solution.
Data:

Apue = 0.49 microns & := 567 x 107° W/(m*K*) (Stefan-Boltzmann constant)

By Wein's displacement law, we have :

Ao T = 2890 microns K

Therefore,
T .o 289%
j'max
ie. T=5898x10°K {surface temperature of sun)

Heat flux at the surface E:
Sun can be considered as a black body; then, from Stefan—Boltzmann law:
E, = oT

ie, Ep= 6.86 x 107 W/m® (heat flux at the surface of sun.)
Example 13.4. The temperature of a body of area 0.1 m? is 900 K. Calculate the total rate of energy emission, intensity of
normal radiation in W/({m?sr), maximum monochromatic emissive power, and wavelength at which it occurs.
$olution.
Data:

T=90K A:=01m? o:=567x 10" W/(m’K") (Stefan-Boltzmann constant)

Total rate of energy emission:

E, =T {from Stefan—Bolizmann law)
ie. E, = 3.72 x 10" W/m? (total emissive power)
Therefore,
Q=LA
ie. Q=37 x1° W (total energy emission from surface)

Intensity of normal radiation:
(Note that for a black (diffuée) surface, intensity is the same in all directions.)
I:= L
b4
ie. I=1.184 x 10* Wims)
Wavelength of maximum monochromatic emissive power:
From Wein's displacement law, we have:
Ay T = 2898 K

Therefore,
2898
A=
ie. Ay = 3.22 ym (wave length for maximum monockromatic emissive power at 900 K.)

Maximum monochromatic emissive power:
We use Planck’s law, with values of constants, C; and Cy:
C, = 3.742 x 10° W/ (gm*/m?)
and, C, 1= 14387 x 10* pmK

RADIATION




Cl';‘-;;--5

Eppmax = T (Planck’s law)
exp( 2 ZTJ -1

ie. Epimax -= 7.6 X 10° W/tm®micron) {(maximum monochrome emissive power.).
Alternatively:
We can directly apply Eq.13.12:

Epam = 1287 x 107°-T° W/m>, .(13.12)
ie. Epim = 7.6 x 10° W/m® = 7.6 x 10° W/(m%m) (same as obtained above.)

Example 13.5. Window glass transmits radiant energy in the wavelength range (.4 #m to 2.5 um. Determine the fraction
of total radiant energy which is transmittted, when the source temperature is: (a) 5800 K (i.e. sun’s surface temperature),
and (b) 300 K (i.e. room temperature).
Solution.
Data:
T,=5800K T,=300K A:=04m Z:=25um
0= 5.67 x 107 W/(m?K*") (Stefan-Boltzmann constant)
Case (a): Source temperature T, = 5800 K
We use Table 13.2 where radiation functions are tabulated against the product (A.T).
We have:
AyTy =232 x 10° gm/K
Ay Ty =145 x 10* pm/K
Corresponding to these AT values, we get, from Table 13.2:
Fy z == 0.12454 (by interpolation)
and, Ey 15 = 09661
Therefore, fraction transmmitted is equal to:
0.9661 — 0.12454 = (.842
i.e. 84.2% of the energy coming from the sun (at 5800 K) is transmitted through the window glass.
Case (b): Source temperature T, = 300 K
Again, we use Table 13.2 where, radiation functions are tabulated against the product (4.T).

We have:
A,-Ty = 120 gmK
A-Ty = 750 pmK
Corresponding to these AT values, we get, from Table 13.2:
Fy 2=00
and, Fo_i2 = 1.2 % 107° = almost zero,

Le. practically no energy will be transmitted through the window glass in this wavelength range, if the source tempera-
ture = 300 K. In other words, glass is ‘opaque’ to radiation at 300 K in the wavelength range 0.4 gm to 2.5 gm.

As mentioned in text, this is the principle of ‘Greenhouse effect’, wherein radiation from a high temperature source
(i.e. sun) is allowed to pass through the glass into the enclosure of the greenhouse, while radiation at a relatively low
temperature from within the enclosure, is not allowed to es-
cape out. This, in effect, causes an increase in the tempera-

%4 ture of the space within the enclosure.
15 Exomple 13.6. Spectral emissivity of a particular surface at
800 K is approximated by a step function, as follows: £, = 0.1
08 for Ai=0 tl()JPZ Hm, g5 = Og fortflp= 2to 15 um, and &, = (]].8 for
A = 15 to e Caiculate (i) the total (hemispherical) emissive
0.5+ power, and (ii) total hemispherical emissivity, £ over all
wavelengths.
Solution.
0.1 Data:
0 T T T T T T T I » T:=80K (temperature)
0 2 10 16 A pm & =01 (emissivity in wavelength range: 0 to 2 um)
& =05 (emissivity in wavelength range: 2 to 15 gon)
FIGURE Exomple 13.6 Spectral emissivity distribu- 5 =08 (emissivity in wavelength range: 15 o to .}
tion egainst wavelength o= 5.67 x 107" W/(m?KY)  (Stefan-Boltzmann constant)
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Ay =2 m
Ay =15 pm
/13 = oo
Planck’s law gives spectral emissive power of a black body.
For a non-grey surface considered in this problem, we can write:

Total emissive power: E= Fl(l)-Em di
0

Variation of £; with 4 is specified in the problem.
Therefore, splitting the above integral into parts:

2 15
E= Is,lu)-zudz + J-E,l(ﬂ.)-Eudl - F‘I(A)-Eudl
] 2 15

15
ie. E=01 J‘ZE,,A dA+05- j E,,dA+08- | E dd
0 2 15
E
Then, €= E £,-(Fy_p) + & (Fi_w} + & (Fis_nfinity)
ie. €= £ (Ey_n) + & (Fo_sn— Fo_a) + & (Fo_insinity — Fin_i2) -{a)
Values of Fy,_j;, etc., are obtained from Table 13.2.
We have
AT = 1.6 x 10° (correspondingly, we get: Fy_y; = 0.0197)
A T=12x 10 (correspondingly, we get: Fy ;o = 0.9451)
Ay T = (correspondingly, we get: Fy 43 =1)
Then, from Eq. a:
£:= 0.0197 + 0.5-(0.9451 — 0.0197) + 0.8-(1 - 0.9451)
ie. £=10.516 (Total hemispherical emissivity over all wavelengths. )
And, total emissive power of this surface is given by:
E=coT W/m? {total emissive power)
ie. E = 1.199 x 10* Wim?® (total emissive power.)

13.4 The View Factor and Radiation Energy Exchange between Black Bodies

So far, we studied the fundamental laws of radiation and radiative properties of surfaces. But, in practical situa-
tions, we are mostly interested in radiative heat exchange between surfaces. The radiative heat exchange may be
only between two surfaces, or from one or more surfaces in an enclosure. If the surfaces involved are ‘black’,
then, the problem is simplified since the radiation falling on a black surface is completely absorbed and none is
reflected; however, if the surfaces are ‘grey’, then the problem is slightly more complicated since one has to take
into account the multiple reflections from surfaces. In either case, the radiative heat exchange depends on:

(i) absolute temperatures of surfaces

(i) radiative properties of surfaces, and
(iii) geometry and relative orientation of the surfaces involved.

Point (iii} mentioned above is obvious since, generally, in engineering problems, we assume the surfaces to
be ‘diffuse’, i.e. radiation is emitted in all possible directions, and all of the energy emitted by surface 1 may not
be intercepted by surface 2. This statement is quantified by what is known as “View factor’. View factor is also
known by other names such as: ‘configuration factor’, ‘shape factor’, ‘angle factor’, etc.

View factor is defined as fhe fraction of radiant energy leaving one surface which strikes a second surface directly.
Here, ‘directly’ means that reflection or re-radiated energy is not considered. View factor is denoted by Fy,, where
the first subscript, 1 stands for the emitting surface, and the second subscript, 2 stands for the receiving surface.

We have:

F,, = (Direct radiation from surface 1 incident on surface 2) divided by (Total radiation from emitting
surface 1).

We desire to develop a general relation for view factor between two surfaces.

Infinetisimal areas:
As a first step, consider differential areas dA, and dA; on two black surfaces A; and A, exchanging heat by
radiation only. See Fig. 13.13.
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dA, dA, and dA, are at a distance ‘v’ apart and the normals to
A these areas make angles ¢; and ¢, with the line connecting
them, as shown. Then, using the definition of intensity, we
can write;
Energy leaving dA; and falling on dA, = d(},; =
Black surface, e =1 Intensity of black body dA, x projected area of dA, on a plane
perpendicular to line joining dA; and dA2 x solid angle sub-

tended by dA; at dA;.
Ay Biack surface, £ = 1 ie dQq, =L, (dA,-cos (¢1))-(ML2MJ -{13.29)
4
A
! Now, total energy radiated from dA, is given by:
dQ, = Ey-dA,
FIGURE 13.13 Areas and angles used in ie. dQ, = (x Iyy)-dA, --(13.30)
derivation of view factor relation Then, by definition, the view factor F,,; 445 is the ratio of
dQy; to dQy:
cos{#}-cos(p,)-dA
Epnians = (¢1) §¢2) 2 .(1331)

zr
Note that the view factor involves geometrical quantities only.
Eq. 13.31 gives the view factor between two infinetisimal areas. Such a situation is encountered even when
finite areas are involved, when the distance between these two areas 'v’, is very large.
Infinitesimal to finite area: i.e. the emitter is very small and the receiving surface is of finite size. Here,
integration over the entire surface A, has to be considered.
Again, remembering the definition of view factor, and forming the ratio of 4Q,, to dQQ;:

IIH(CO‘S(%) dA;)cos{g,) %
A

Fintonr = 22
dA1-A2 7l dA,
Since both Ip; and dA, are independent of integration, we can write:
cos(p;) cos dA
Fiar-az = j {cos(gy) 2(¢2) 2 (13.32)
I zr

Practical situation of calculating view factors between infinitesimal to finite areas are encountered in the case
of a small thermocouple bead located inside a pipe or a small, spherical point source radiator located by the side
of a wall, etc.

Finite to finite area: once again, from the definition of view factor:

[ [ itcosten aapycoston 22
AlLAZ r

Faraz =
I”Ibl d.A]
Al
For constant I, above equation becomes:
1 {cos{g) cos(
Faras = I j L ¢2)dA1dA2 -(13.33)
rA Jardaz r

It is clear from Eqs. 13.31, 13.32 and 13.33 that the view factor depends only on the relative orientation (or
spatial relation) of the two bodies; it does not depend on the emissivities of the surfaces or the temperatures,
Further, also note that the surfaces are assumed to be isothermal and diffuse emitters.

In general, we write Eq. 13.33 compactly as:

Fpe L j (c08(¢1)2cos(¢z) A dA, (13.34)
rAyJardaz r

Here, I}, means ‘the view factor from surface 1 to surface 2.
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Similarly, if we desire to get the view factor from surface 2 to surface 1, we simply interchange suffixes 1
and 2:

1 (cos(¢) cos(gy)
Fy = WJ J' {€0s10p) OSP4, da (1335
n= 24 2 Bt (13.35)

Note that in Egs. 13.34 and 13.35, the double integrals differ only in the order of integration, and as such,
yield the same result. Then, multiplying Eq. 13.34 by A,, and Eq. 13.35 by A,, and equating the double integrals,
we get:

Ay-Fiy=AyFy ..{13.36)

Eq. 13.36 is known as ‘reciprocity theorem” and is a very useful and important relation. It helps one to find
out cne of the view factors when the other one is known. In practice, one of the view factors which is easier to
calculate is obtained first, and the other view factor is found out next, by using the reciprocity theorem.

Note: [t is easier to remember the view factor relation given in Eq. 13.34 as:

¥

A Fp = LJ “—Osiﬂl)izf’siﬂmlmz. {13.37)
F4
A2

Radiation energy exchange between black bodies:
As already mentioned, analysis of heat exchange between two black bodies is simpler since a black body absorbs
all the radiation impinging on it and none is reflected.
Consider two black surfaces A; and A, exchanging radiation energy with each other.
Then, rate of energy emitted by surface 1, which directly strikes surface 2 is given by:
Q= Ay FyEp = ApFp o Ty ..(13.38)
This energy is completely absorbed by surface 2, since surface 2 is black.
Similarly, of energy emitted by surface 2, which directly strikes surface 1 is given by:
Qn = Ay Fy By = Ay Fyy 0TS -(13.39)
and, net radiation exchange between the two surfaces is:
Quet = Ay Fiy6-T1 - Ay Py 0 T
But, Ay-Fi; = A, F,y by reciprocity theorem
Therefore,
Qoo = A Fra 0 (T — T = Ay Fyy (T - T, W. ..(13.40)

13.5 Properties of View Factor and View Factor Algebra

We shall enumerate the salient features of view factor. View factors of some geometries are easily calculated;
however, more often, calculation of view factors for more complex shapes is quite difficult. In many cases, the
complex shapes could be broken down into simpler shapes for whom the view factors are already known or
could easily be calculated. Then, with this knowledge, the view factor for the desired complex shape could be
calculated by remembering the definition of view factor as the fraction of energy emitted by surface 1, which is
intercepted directly by surface 2, and the interrelation between the various view factors. This is known as ‘view
factor algebra’.
Properties of view factor:
(i) The view factor depends only on the geometrics of bodies involved and not on their temperatures or
surface properties.
(i) Between two surfaces that exchange energy by radiation, the mutual shape factors are governed by the
‘reciprocity relation’, namely, A,.Fi; = A,.Fy.
(iii) When a convex surface 1 is completely enclosed by another surface 2, it is clear from Fig. 13.14 (a) that all
of the radiant energy emitted by surface 1 is intercepted by the enclosing surface 2. Therefore, view factor
of surface 1 w.r.t. surface 2 is equal to unity. i.e. Fy; = 1. And, the view factor of surface 2 w.r.t. surface 1
is then easily calculated by applying the reciprocity relation, i.e. A;.1 = Ay.Fy, of, Fy = A/ Ay
{iv) Radiation emitted from a flat surface never falls directly on that surface (see Fig. 13.14 (b)), i.e. view factor
of a flat surface w.r.t. itself is equal to zero, i.e. F;; = 0. This is valid for a convex surface too, as shown in
Fig. 13.14 (c). '
(v) For a concave surface, it is clear from Fig. 13.14 {d) that Fy; is not equal to zero since some fraction of
radiation emitted by a concave surface does fall on that surface directly.
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Fiz=1
Fa1 = AslA,

Fiy=0 F,1=0 Fi 20

(a) Surface 1 completely (b) Flat surface {(c) Convex surface (d} Concave surface
enclosed by surface 2

FIGURE 13.14 View faclors for a few surfaces

(vi} If two, plane surfaces A; and A, are parallel to each other and separated by a short distance between
them, practically all the radiation issuing from surface 1 falls directly on surface 2, and vice-versa. There-
fore, F, = Fp; = 1.

(vii) When the radiating surface 1 is divided into, say, two sub-areas A; and A, as shown in Fig. 13.15 (a), we

have;
ApFp=AyFp+ ApFy, -(13.41)
Obviously, F; #F3 + Fy.
(viii} Instead, if the receiving surface A, is sub-divided into parts A; and A, as shown in Fig. 13.15 (b), we
have:
Ay Fy = Ay Fyg + A Fyy ..(13.42)
Le. Fip=Fi+Fyy

Le. view factor from the emitting surface 1 to a sub-divided receiving surface is simply equal to the sum of the
individual shape factors from the surface 1 to the respective parts of the receiving surface, This is known as
‘Superposition rule’.

P AsFa Akl

A=Ay + Ay
(a) Radiating surface A, is subdivided into A, and A, (b) Receiving surface A, is subdivided into A, and A,

FIGURE 13.15 View factors for sub-divided surfaces

(ix) Symmetry rule If two (or more) surfaces are symmetrically located w.r.t. the radiating surface 1, then
the view factors from surface 1 to these symmetrically located surfaces are identical. A close inspection of
the geometry will reveal if there is any symmetry in a given problem,

(x) Summation rule Since radiation energy is emitted from a surface in all directions, invariably, we con-
sider the emitting surface to be part of an enclosure, Even if there is an opening, we consider the opening
as a surface with the radiative properties of that opening. Then, the conservation of energy principle
requires that sum of all the view factors from the surface 1 to all other surfaces forming the enclosure,
must be equal to 1. See Fig. 13.16, where the interior surface of a completely enclosed space is sub-
divided into n parts, each of area A;, Ay, A,, ..., A,

Then,
‘Fyy+Fy+ .. +F,=1
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Fyy+Fp+..+Fy=1

Fo+Fp+. . +F, =1 {13.43)
o1 3 1.e.
n
\ 4 I-Z{Fij =1i=1,23, .1 (13.44)

1 {xi) In an enclosure of ‘n" black surfaces, maintained at tempera-

n
Z Fp=1 i=1,2,3,..n tures Ty, Ty, ... ,T,, net radiation from any surface, say, sur-
f=1 face 1, is given by summing up the net radiation heat

transfers from surface 1 to each of the other surfaces of the
FIGURE 13.16 View fador—summa- enclosure:

tion rule for radiation in an enclosure P 4 ma
Q1m= AyFpo(I7 -Ta) + ApFy o (Ty - T5)
+ A F o (T -TH + o+ A P o (TH-T,)  ..(1345)
Note: Often, while solving radiation problems, determination of the view factor is the most difficult part. It
will be useful to keep in mind the definition of view factor, summation rule, reciprocity relation, superposition
rule and symmetry rule while attempting to find out the view factors.

13.6 Methods of Determining View Factors

While solving problems in radiation heat transfer, required numerical values of view factors may be obtained by
the following methods:
(i} By performing the necessary integrations in Egs. 13.31, 13.32 or 13.33. However, except in very simple
cases, most of the time, the direct integration procedure is quite difficult.
{ii) Use of readily available analytical formulas or graphs prepared by researchers for the specific geometry
in question. :
{ili) Use of view factor algebra in conjunction with definition of view factor, summation rule, reciprocity
relation, superposition rule and symmetry rule.
{(iv) Experimental and graphical techniques.

13.6.1 By Direct Integration

We shall demonstrate direct integration procedure with two examples:
Example 13.7. Find out the view factor from an elemental disk 44, to a much larger disk A, of radius R, located directly
above and parallel to the small disk at a vertical distance L. from the small disk, as shown in Fig. Example 13.7.
Solution. Area dA, is much smaller than area A,; so, this is the case of finding out the view factor from a differential area
to a finite area. So, we shall apply Eq. 13.32, ie.

FM]—AZ - I CDS(¢1) COS(¢2)dA2 (1332)

zr?
A2

Now, on area A,, consider a differential area dA, of radius x and width dx as shown. Angles ¢ and @,, made by the
line ‘¥ connecting dA; and dA, with the two normals are equal, since the disks are parallel.

We have: L S
L
cos(¢h) = 2
L
and, cos (@) = = co5 {¢h)
J
and, differential area, dA, = 2-mx-dx.

Then, from Eq. 13.32 we get:

R 2.0 x

1z = . (xz +L2)l
R x
ie. F =2-L"’=J‘ e dx
Le 12 ! (x2+L2)2
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(a) (b)

FIGURE Example 13.7 View factor from an elemental arsa dA; to a larger area A,

Now, let: uo=xt+ L2
Then, du = 2-x-dx
Then, expression for above integral becomes:

j__Qde _I_l_du s RS S
(X +) @ w4+

Therefore, putting the limits for x from 0 to R:

1 1
—J2 |
FIZ—L [R1+L2 LZJ

R?
R*+12
We can also write:

2
R
Fp=|=—
I* + R?

ie. F5 = sin’ (a) (where, 2 is the angle subtended by the area A, at dA, as shown in Fig. Example 13.7.)
Exomple 13.8. Find out the view factors F;; and F,; between two square surfaces 1 and 2, oriented towards each other as
shown in Fig. Example 13.8. Plate 1 has an area of 0.08 m? and plate 2 has an area of 0.05 m?.

Solution.

Since both the plane surfaces are small compared to the distance between them, they can be approximated as differential
areas, i.e. we can apply Eq. 13.31 to get the view factors:

cos (#4)-cos(g,)-dA,

JT-TZ

ie, F, =

Fia1_aaz = ..{13.31}

Data:

dA =008 m? dA,=005m2 r=5m ¢ =15deg ie @ := 15-% radians ¢ == 40 deg.

ie  gy:= 40~% radians

Note: ¢ and ¢, are expressed in radians, since Mathcad requires that the angles be in radians while evaluating trigono-
metric functions such as sin (@), cos{g), etc.

Therefore, cos{#) = 0.966
and, cos(g)= 0.766

Then, from Eq. 13.31, we get:
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Plate 1 cos(¢,)-cos{¢,)-dA,
Fip = “—T

ie. Fpp = 47106 x 1074
i.e. view factor from surface 1 to surface 2 is 0.00047106.
Next, to determine the view factor from surface 2 to 1, we can conven-
iently use the reciprocity rule, ie.
AyFp= Ay Fy
In the present case, we write:
dA| Ty = dAy Fy

dA,-F,
ie. Fpp m —112
2t dA,
ie. Fy = 7.537 x 107*

i.e. view factor from surface 2 to surface 1 is 0.0007537.

FIGURE Exarmple 13.8 View factors 13.6.2 By Analytical Formulas and Graphs
between two small p!utes separated As stated earlier, determination of view factors by direct integration is
by a large distance rather involved because of the contour integrations to be performed
over the surfaces. However, several research workers have published
analytical relations and graphs for many of the commonly encountered geometries.
Figs. 13.17 and 13.18 show a few two-dimensional and three-dimensional geometries and Tables 13.4 and
13.5 give corresponding view factor relations.
Note: In Table 13.5, atan{x) means arctan{x) or tan™'(x).

/ 2
STy

s

. [« w
{a) Parallel plates with midlines {b} Inclined paralle} plates of equal
connected by perpendicular width and with a commen edge
X /1

i

Y

<

W, ¥
(c) Perpendicular plates with a {(d) Three-sided enclosure

common edge
S .
é CB E_é . diameter, D
f
P

¥

(e) Infinite plane and row of cylinders
FIGURE 13.17 Few two-dimensional geometries, infinitely long
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X
(a) Aligned paraliel rectangles (b) Coaxial parallel disks (¢} Perpendicular rectangles

with a common edge
FIGURE 13.18 Few three-dimensional geometries

TABLE 13.4 View fadors for a few two-dimensional geometries

Parallel plates with midlines connected W= % W, = v
by perpendicular (See Fig. 13.17.a) L L
1 1
g o [0 W 4 [, w4 a2
¥ EW;
Inclined parallel plates of equal width and Fy=1-sin (1.0.}
with a common edge (See Fig. 13.17,b) 2
Perpendicular plates with a common 2 %
. w, w
edge (See Fig. 13.17,c) F,= 1 1+__,__[1+(_;} :l
2 w, W,
Three-sided enclosure (See Fig. 13.17,d) Foo Xt W, — W,
4 2.w,
Infinite plane and row of cylinders 2 % " ant
(See Fig. 13.17.d) Fo=1- 1_(2J + E-tan'1 s -D )¢
Y s s 0?

Table 13.5 gives view factor relations for three important three-dimensional geometries, often required in
practice. For example, view factors between aligned parallel rectangles will be useful to calculate heat transfer
between the floor and ceiling of a room or a furnace; view factors between coaxial parallel disks will be required
to calculate the heat transfer between the top and bottom of a cylindrical furnace, and the view factors between
perpendicular rectangles is necessary to calculate the fraction of energy entering a floor through a window on the
adjacent wall, or to determine the fraction of energy radiated from the door of a furnace to the floor outside, etc.

It may be observed from the view factor relations given in Table 13.5 that even for these simple cases, the
relations are rather complex and difficult to calculate. So, generally, view factors for these (and, many other)
geometries are presented in graphical form. It is convenient to use the graphs to determine the view factors
quickly, but with the sacrifice of a little accuracy. However, if a computer is available, it is suggested that the
analytical relations given in Tables 13.4 and 13.5 could be used for better accuracy.

View factor relation for aligned, parallel rectangles of Fig. 13.18a, is shown in graphical form in Fig. 13.19.
This graph is drawn with Mathcad. Here, Fy is plotted against X/L varying from 0.1 to about 30, for given values
of Y/L (with Y/L = 0.1, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0 and 10.0).
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Aligned parallel rectangles
(See Fig. 13.18,a)

2 (1+ XX2)(1+ ¥YY?)
A = — = —
Txxvy ©° '"[ T+ XXZ + YY?
1
C= XX(1+ YY) atan XX -
| (1+YY?)2 |
1
D= YY(t + XX3)% .atan —YY—,
L1+ X%)2 |

E= XX atan(XX) F=YY-atan (YY)
Fy=AB+C+D-E-F

Coanxial parallel disks rn 5 1+ /2
{See Fig. 13.17,b) Ri=p R=, S=1+ ?EL
1
272
1 r
Fi= -|8-]8%-4|L
Perpendicular rectangles z2 Y 1 1
with a common edge (See H=< W=+ A=s_— B=Watn =

Fig. 13.18,c)

1
C= H-atan(%) D= (H? + W?2 .atan| - -
(H? +w?)2

g W)+ HY) [ W21+ W2 + ) "R ety 1
T AEWI ) [+ WA WL HY) | | D) (HE + W)

Fy= A-(B +C-D +l.|n(E)]
4

Graph of view factor for coaxial parallel disks (of Fig. 13.18,b) is drawn using Mathcad and is shown in Fig.
13.20. Here, view factor Fyis plotted against L/r; for different values of rj/ L.

And, graph of view factors for perpendicular rectangles with a common edge (of Fig. 13.18,c), drawn using
Mathcad, is shown in Fig. 13.21. Here, view factor Fyis plotted against Z/ X for different values of Y/X.

Another practically important geometry is that of two concentric cylinders of finite length. View factors
associated with this geometry are shown in Fig. 13.22.

We shall illustrate the use of analytical relations for view factors given in Table 13.5 or the Figs. 13.19 to
13.21, with an example:

Example 139. Find out the net heat transferred between two circular disks 1 and 2, oriented one above the other, paral-

lel to each other on the same centre line, as shown in Fig. Example 13.9. Disk 1 has a radius of 0.5 m and is maintained
at 1000 X, and disk 2 has a radius of 0.6 m and is maintained at 600 K. Assume both the disks to be black surfaces.




View factor for parallel rectangles View factor for coaxial parallel disks
0L
T 1
T RSN T o 0 i A Far
// 41 o
-~ 1[(H K N
l4F - e 0.8 7 /ﬁ—-’""""
[ 1.8 ! i
Ioll / e
ue 06 ’ :
/ S N
0.1 A/ _ W J AR 1.0) - pdH
//__ PaRIN : N ;J ,J ; /-//
‘;‘/1/ T . - = ~ 04 1, ’; =
D BAE7AYE /
1 | /J j/ A .-'/ O a8
| 0.2f )y aSzillies
L | 2 VL niLi=13|
001t A L : - et g A R,
0.1 1 XL 10 100 0.1 1 10
/ Lir;
FIGURE 13.19 View factor for cligned, FIGURE 13.20 View fador for coaxial,
parallel rectangles (See Fig. 13.18a} parallel disks {See Fig. 13.18b}
05 View factor for perpendicular rectangles
 yix 2002 | — L1
"8 -~ 11711 T
04t~ AR T
02}
(=03 e
%611l |10
0.2 -
/‘ 207
O T T T e T
’ T Lt ~|109]..
() S '
0.1 1 10
2x

o= 567 x 1078 W/m’K

FIGURE 13.21 View factors for coaxial, perpendicular rectangles with a common edge (See Fig. 13.18c)
Solution,
rpi=06m Li=1m T,=100K T,=600K
Ay = mrlie Ay = 1131 m?
-(13.40)

Data:
r;=05m f
Ay = mrf ie. Ay = 0785 m?
This is the case of heat transfer between two black surfaces. So, we use Eq. (13.40), i.e.
Qret = Ay Frp o (T* = T5)

= Ay Fp o (T -TH W
So, the problem reduces to calculating the view factor Fy; or F,;. We can easily find out F,; using Fig. 13.20. How-

ever, we can determine F,; analytically more accurately with Mathcad using the view factor relation given in Table 13.5

for coaxial parallel disks.
We re-write the view factor relation given in Table 13.5 as follows, for ease of calculation with Mathcad:
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FIGURE 13.22 View factors for two concentric cylinders of finite length: (a} outer eylinder to inner cylinder (b)
outer gylinder to itself (Source: Cengel, Yunus A. [1998]. Heat Transfer: A Practical Approach. Pub.: McGrow-Hill)

, r; 1+R} T,=600K n=06m
Rii= & Rj=— SR,R)=1+——1 2 -~ i
L L 7 R
—
l 1
. 273
. 2 R; H = L=1m
Froy (R R) = > S(R;,R,-)W{S(R.,R,) —4-[?, 7, = 1000 K- | r=05m
REE=SS
{vizw factor for coaxial parallel disks)
Here, first, S is written as a function of R, and R; where, R; = r;/ FIGURE Example 13.9 Coaxial
{ R; and R, Now, pre

L and R; = r;/L. Then, Fy, is expressed as a function o

F,, is easily obtained for any values of R; and R; by simply writing parallel disks

Fip Ry R) = .
Therefore, in this case, R, =05
and, RI- =0.6
We get: Fi;(05, 0.6) = 0.232

Verify This result may be verified from Fig. 13.20 where, Fy; is plotted against L/#; for various values of 7;/L. Now, for
our problem, L/t; = 1/0.5 =2, and rj/ L =06/1 = 0.6. Then, from Fig. 13.20, we read F; = 0.232, approximately,

ie. Fyp = 0232
Therefore, net transfer between disks 1 and 2:

Qret 1= Ay Fry (T -THW {from Eg. 13.40)
ie. Qe = 8.992 x 10° W.

13.6.3 By Use of View Factor Algebra
Often, we have to find out view factors for geometries for which readily no analytical relations or graphs are
available. In such cases, sometimes, it may be possible to get the required view factor in terms of view factors of
already known geometries, by suitable manipulation using view factor algebra. For this purpose, we remember
the definition of view factor (as the fraction of energy emitted by surface 1 and directly falling on surface 2), and
invoke the summation rule, reciprocity relation, and inspection of geometry.

We shall illustrate this procedure with some important examples:
Example 13.10. Find out the net heat transferred between the areas A; and A, shown in Fig. Example 13.10. Area lis
maintained at 700 K, and area 2 is maintained at 400 K . Assume both the surfaces to be black.
Solutien. This is the case of heat transfer between two black surfaces. So, we use Eq. 13.40 ie.
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Vie
S W factor f_o parallel rectangies

1+ View factor for nnavint ... .

Quet = ArFp Ty - Tf) = Ay Fpp oo (T = TH), W .(13.40)
S0, the problem reduces to calculating the view factor Fy, or F,. We
see that to calculate Fy, for areas A, and A, as oriented in the Fig. Example
13.10 we do not readily have an analytical relation or a graph. Let us de-
note the combined areas (A, + A;) by A5 and (A, + A,) by A;. Then, we see
that A; and A, are perpendicular rectangles which have a common edge,
and we have graphs or analytical relation for the view factor for such an
orientation. Then, we resort to view factor algebra, as follows:
Remember that by definition, view factor F,, is the fraction of radiant
energy emitted by surface 1 which falls directly on surface 2. Looking at
the Fig. Example 13.10 we can say that fraction of energy leaving A, and
falling on A, is equal to the fraction falling on A, minus the fraction falling

FIGURE Example 13.10 Perpendicular " Ay

rectangles with a common edge ie. Fip=Fig-Fy (by defmition of view factor)
ie. Fip= Fﬂ--j-ﬁ- - Fy % (since by reciprocity relation, A;-Fig= AgFiq and Ay-Fiy = Ay Fyy}
1 1
ie. Fip = %-(Fﬁs -Fg) - %-(Fﬁ - Fg) (Eq.A ... using the definition of view factor, as done in first step above}
1 1

Now, observe that view factors Fg;, Fg, Fgs and Fy, refer to perpendicular rectangles with a common edge, and can
be readily obtained from Fig. 13.21, or by analytical relation given in Table 13.5.

We re-write the view factor relation for perpendicular rectangles with a common edge, given in Table 13.5 as
follows, for ease of calculation with Mathcad:

Z Y 1 i
H=—- W=—- A = ——— B =W e
X x AW:=_Sn BOY atan(w}
1 3 s 1
C(H) := H-atan T D(H, W) = (H" + W3 2.atan T
(H? +W?)?
A+Wi-a+HY) [ whasw?+my | [ B2.a+ B2 4wy |
E(H, W) = ] ‘T Z 2 2 : 2
A+WP+H?) | Q+WHW2+ HY) | |+ HY)-(H? + WD)
Fy(H, W) = A(W): [B(W) + C{H)-- D(H, W) +l-]n(E(H,W))] (Eq. B...view factor for coaxial
4 perpendicular rectangles with
a common edge)
To find Feg:
X=5 Y:=5 Z:=5 (w.r.t. Fig. 13.18 (c) and Fig. Example 13.12)
H:= 2 ie. H=1
X
Y
W= — W=1
% be
Therefore,
F;(1, 1) =02 (substituting in Eq. B}
ie. Feg =02 {(wiew factor from area Ay to Ag)
Note: This value can be verified from Fig. 13.21 also.
To find Fgy:
X=5 Y:=5 Z=3 (w.r.t. Fig. 13.18 (c) and Fig. Example 13.12)
H:= z iee H=06
X
W= Y ie. W=1
X
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